
The Conversational Internet:
Creating a natural language interface for visually impaired

people to converse with the Web
Niki Gomez

Royal London Society for Blind People
Dorton House

Seal, Sevenoaks, TN15 0EB
+44 (0)7971 497420

niki@sloan.mit.edu

Dale Lane
IBM UK

Hursley Park, Winchester
Hampshire, SO21 2JN
+44 (0)7887 928480

dale.lane@uk.ibm.com

Julian Dailly
Royal London Society for Blind People

Dorton House
Seal, Sevenoaks, TN15 0EB

+44 (0)7909 514858
julian.dailly@rlsb.org.uk

ABSTRACT
The Conversational Internet is a working prototype created in
collaboration between the Royal London Society for Blind People
and IBM UK. It addresses challenges of visually impaired users
using screen readers as a method of accessing the Internet.

The Conversational Internet allows users to selectively retrieve
information from web pages by asking questions, and aims to
provide a conversational interface. The software has some
understanding of the contents of the page and is able to describe it
to the user, making interactions easier and faster.

IBM created a proof-of-concept using machine learning, natural
language processing and speech technologies and are developing
it further. The approach could be applied to mainstream markets
such as in cars - providing an eyes-free solution for information
retrieval that reduces information overload.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
user interfaces

General Terms
Design, Human Factors

Keywords
Conversational Internet, blind, visually impaired, IBM, RLSB,
Everybody Technology, natural language, machine learning,
browsing by voice

1. INTRODUCTION
The Conversational Internet is a prototype created by IBM with
the Royal London Society for Blind People, a 175 year old charity
in the UK.

The aim of the Conversational Internet is to make access to the
Internet for visually impaired users much easier: a faster and more
precise experience using more intelligent software. We aim to find
a better solution than screen readers to access the Web.

RLSB's beneficiaries reported that screen readers were incredibly
slow and had a poor signal-to-noise ratio, often taking several
minutes to read a single page. This is due to the fact that they read
out every word and element that is on the page.

The user has to understand what the page means, combining the
series of elements that are read out into a mental model of the
page, remembering what is where and what their options are. In
addition to being slow, as an interaction model this introduces a
significant cognitive burden.

RLSB approached IBM to explore how this could be improved
upon. A project was formed to build a demonstration of a
Conversational Internet: a system able to retrieve information
from web pages by allowing the user to ask questions, in a
conversational-style approach.

The aim was to shift some of the cognitive burden from the user
to software, reducing the information that a user needs to hear and
remember in order to interact effectively with a web page.

2. CONVERSATIONAL INTERNET
2.1 Functionality
IBM created a proof-of-concept that demonstrated the value of
two improvements to the traditional screenreader approach.

2.1.1 Understanding the web page
Rather than read everything that is on a web page, the software
attempts to interpret the page, both structurally and semantically.
Important elements are identified to the user, together with an
indication of possible next steps.

This included:

• identifying the type of website
e.g. “This looks like a news site”, “This looks like a
retail site”

• identifying the available navigation methods
e.g. “There are a number of menus”, “There is a search
box”, “There are several links to stories”

• identifying a call-to-action or instruction to the user
e.g. “There is a form for entering comments”, “There is
a form for entering a postcode”

The result was that, on visiting a text-heavy site such as BBC
News, rather than spend several minutes reading out every
element on the page, the software informs the user that they are on
what looks like a news site, and what their options are.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
W4A2013 – Communications, May 13–15, 2013, Rio de Janeiro, Brazil.
Copyright 2010 ACM 978-1-4503-1844-0 …$15.00.

2.1.2 Understanding the user's intention
Rather than require the user to translate their intention (e.g.
clicking on a particular menu item) into the series of physical
actions necessary to achieve it (e.g. combination of tab / arrow /
Enter key presses), the software attempts to understand a request
provided in natural language, and perform the necessary actions.

This included:

• Retrieving information
e.g. “What is the top story?”, “What are the menu
items?”, “What are the headlines?”, “What are the most
popular stories?”, “Read me the story”
The requested information is found and read out,
without needing the user to listen to everything else.

• Performing mouse actions
e.g. “Take me to Politics”, “Go to the Olympics story”
The appropriate link/button/page element is identified
and clicked upon, without needing the user to know
where on the page it is, or have to navigate to it.

• Performing keyboard actions
e.g. entering search terms, comments, etc.
The appropriate text box on the page is identified, and
the requested text is submitted without needing the user
to know where on the page it is, or type in their query.

Rather than require users to learn an extensive set of commands,
the user is free to describe their request in natural language which
the software attempts to recognise.

The user is able to extend the vocabulary of the system by
teaching it new synonyms for entities and actions that it knows.
When an unknown term is used, the system uses language
resources to look for synonyms of the term already in it's lexicon.
The user is asked to confirm the interpretation of the unknown
word before it is added to the system.

2.1.3 Speech interface
The proof-of-concept offers two modes of input: keyboard or
speech. Speech recognition allows for a completely eyes-free
mode of operation, with the only physical interaction required
being button presses to start and stop the system listening for
input. Responses are read out using text-to-speech. The messages
are also displayed on-screen alongside the page.

2.2 Project status

The project has produced a functioning prototype which is
continuing to be developed further. Training to date has led to the
proof-of-concept being most effective at article-based sites, such
as news sites, blogs, and encyclopedias.

2.3 Implementation

2.3.1 Conversational Internet client

For the purposes of the proof-of-concept, the client was
implemented in JavaScript as an extension to the Firefox web
browser [1]. This allowed the client to use Firefox's existing
rendering engine, reducing work involved in interpreting the raw
HTML of web pages. It also avoided needing to interpret
JavaScript or other dynamic elements. The client looks at the final
state of the page, as rendered by Firefox.

This also means that pages requiring the user to log in, or have
some other cookie-maintained state, are easier to support than it
might've been using a server-only implementation.

When the user visits a new web page, the client captures the
current state of the page DOM. It calculates attributes of the page
elements, such as their absolute position, using jQuery [2]. The
client ensures that every element on the page is uniquely
identifiable, adding IDs to any page element that does not already
have one, so that responses from the server can instruct the client
where to click or type with an agreed frame of reference.

This information and the user's id, is submitted to a REST web
service provided by the Conversational Internet server.

Once processed by the server, the client informs the user that the
system is ready to receive questions, with an audible beep. The
user can then submit questions or instructions, which are sent to
the server using REST HTTP requests.

As all of the interaction between client and server uses REST over
HTTP, it is possible to implement future clients, such as for
smartphone or in-car platforms, without changes to the server.

The client also includes a training mode, used to gather machine
learning data. This was used during development – by navigating
to new web pages in Firefox, developers could mark which parts
of the page contained menus, comment boxes, headlines, search
boxes, etc. This provided valuable training and test data for the
development of the server components.

2.3.2 Conversational Internet server

The server is implemented in Java, hosting a number of web
services. The functionality of the services themselves are
implemented using Apache UIMA [3] – a framework and OASIS
[4] standard for building text analytics applications.

UIMA hosts pipelines of discrete annotators, each of which uses a
different strategy to try and identify meaning behind areas of the
web page the user is viewing.

There are two main pipelines in the server. The first is used to
understand the web page.

As described earlier, when the user visits a web page, the
Conversational Internet client submits it to the server for analysis.
The contents of the web page – including the text contents, the
DOM structure of the HTML markup including any semantic tags
used, and other metadata gathered by the client – go through a
UIMA analysis engine. It passes through several annotators, each
of which is looking for something different in the page.

By itself, no one of these annotators is fool-proof. But they’re not
stand-alone applications. As elements in a pipeline, contributing a
strategy to a collection of results, they’re each useful indicators.
Each of the annotators in each stage of analysis contributes it’s
own metadata, building up a picture of what the page contains.

Several annotators were implemented during development of the
proof-of-concept, and these were grouped into four categories.

Figure 1: Understanding the web page

2.3.2.1 Classify

What type of page is this? Subsequent annotators in the pipeline
will want to treat a news site differently to a retail site, so the first
phase of analysis attempts to classify the site, giving a useful steer
to later annotators.

The two main strategies used in these annotators are:

1) Machine learning classifiers (e.g. Bayesian) which use the
contents of the page to suggest the type of site.

2) Whitelists of known domains from Internet directories

2.3.2.2 Markup

What can we infer from markup used in the page?

For example, have known semantic HTML tags been used,
identifying a section of the page containing a menu or a title?

These were not found to be in common use on web pages during
development, however for pages which include them, they proved
to be a useful signal, so some of the annotators look for known
semantic tags.

2.3.2.3 Structure

What does the structure of the page layout suggest? Using
machine learning, the system is trained to recognise useful
elements, based on structural features such as location, size, type,
colour, class names, parent and child elements, names, labels, etc.

For example, the system was trained by manually classifying
which element of a web page contained the web site's search box.
Repeating this for a large number of pages from many websites
created a model which can be applied to previously unseen
websites, giving an estimation of which element in the page is
most likely to be the site search box.

Similarly, a model was trained to identify which part of a page
contains a menu. Signals such as a series of links, arranged
vertically or horizontally, with similar font styles and sizes, placed
near an edge of a page, and many more were user. This allowed
for an effective model to be created, able to identify the menu on
most previously unseen sites.

Previous work, e.g. Boilerpipe [5], showed the potential of
machine learning models to extract the main textual contents of a
webpage, using signals such as the number of words per
paragraph. We found that we were able to build models capable of
extract several other elements common to most web pages (e.g.
comment boxes, search boxes, menus, links, etc.)

The machine learning models were created and trained using
SPSS Modeler [6]. This offered a simple way to try out a large
number of different modeling algorithms, including classification,
clustering, regression and more, with minimal additional
development effort. SPSS offers a desktop client UI for exploring
the effectiveness of the different algorithms, and the impact on
accuracy of the different features that we tried. It allowed
experimenting as different features and/or algorithms could be
enabled/disabled, showing the result this had on the test data set.
The models used varied between the different structural elements
that were being looked for, however most made use of logistic
regression, bayesian network and CHAID techniques.

At runtime, this is hosted in an SPSS server that the UIMA Java
code can send requests to. This was fast enough that many ML
models could be used during the page analysis annotators.

2.3.2.4 Content

What does the text of the page tell us? Using natural language
processing, the prototype identifies semantic meaning behind
some of the content.

This is a focus area for future development. The proof-of-concept
demonstrates potential benefits of this by looking for common
patterns of calls-to-action, such as instructions to fill out forms.

These patterns were created using LanguageWare [7], a tooling
environment for building semantic text matching applications.
The patterns developed were exported into UIMA-compliant
annotators which could be included in the page analysis pipeline.

The output from this first pipeline is a CAS (Common Analysis
Structure) file, which is stored ready to receive questions and
instructions about it. The CAS is an XML structure made up of
the original web page contents, together with all of the
annotations metadata that were added by the many annotators in
the page analysis pipeline.

The second pipeline is used to respond to user commands. Several
annotators were implemented during the development of the
proof-of-concept, which were grouped into three main phases.

2.3.2.5 Interpretation

The user's request, submitted in natural language, enters a second
UIMA analysis engine. LanguageWare rules are used to map the
provided request/command to the nearest likely match amongst
commands that the Conversational Internet supports.

This uses a number of common natural language processing
techniques, such as part-of-speech tagging and entity recognition,
to try and interpret the user's request.

If an entity or action in the request is not recognised, language
resources such as WordNet [8] are used to attempt to resolve
them. If the unknown word is a known synonym of something
already in the system's lexicon, and the part-of-speech tagging
suggests that the word would fit, this is offered to the user as a
possible interpretation. If the user accepts the interpretation, the
unknown word is added into a user-extension vocabulary.

Context is a focus area for future development. Currently,
commands are interpreted with minimal reference to the analysed
page, and conversational context is limited to a few simple
patterns, such as remembering the last question returned by the
server (allowing the user to answer yes/no to some questions, or
choose an item from a list that the server offered).

2.3.2.6 Extraction

Once the user's intent is identified, the system refers to the
analysis output from the first pipeline.

If the user asked for a specific piece of information, the output
helps identify this info. It could be a selected passage from the
page: a sentence or phrase. It could be the outcome of one or more
analyses - such as identifying the type of website, or the
navigation methods the page makes available.

Figure 2: Responding to commands

If the user asked to perform a task, such as follow a hyperlink, the
output helps identify the link to use.

The serialized CAS from the page analysis pipeline is retrieved
from the cache or disk storage (depending on the time since
analysis). The interpretation of the user's command informs which
annotations are retrieved from the analysed page CAS.

2.3.2.7 Response

If the user requested information, it is read out, selectively reading
out information from the page that the user wants, not the entire
page contents.

The outcome is returned using text-to-speech. Speech services are
provided by Nuance NDev [9], which supplies web services APIs
for both the speech recognition used for input, and the text-to-
speech used to read out responses to the user.

If the user described an action, this is performed and confirmed.
E.g. the system can navigate to a page and say where it has gone.

3. IMPORTANCE
The prototype is the first step in finding a solution for all websites
to be accessible in a new and smarter way to what currently exists.

This solution targets the blind and visually impaired (VI) market
initially as they are the ‘hardest to please’. It could be adapted to
the mainstream market. The natural language interface means it
could target web illiterate users for whom learning to access the
web is a problem. It could also solve the need for many users to
delve through the vast amount of information on the web and
provide an ‘eyes-free’ and ‘hands-free’ solution, enabling multi-
tasking- accessing the web whilst driving, jogging cooking, etc. It
can act as a Web assistant.

The market for voice technology is growing in both the
mainstream and VI markets. In the last twelve months more than
three major voice assistant products have launched including Siri,
Evi, Nuance’s Nina and Google’s Now.

We believe the market is ready and that there are various business
models available to making all websites conversationally-ready.

4. USER FEEDBACK
A formal usability study has not yet been carried out, however
feedback through informal user acceptance reviews by visually
impaired users was an important driver during the development of
the prototype.

This included:

• interviews to identify current approaches for getting
information from the Internet,

• setting tasks to complete using the proof-of-concept and
observing how successful they were,

• interviews after they used the tool to obtain feedback
about their experience.

Reviews of later versions of the prototype were very positive, and
showed that visually impaired users were able to complete most of
their common information retrieval tasks faster than using their
current strategies.

5. CONCLUSIONS
Although still an early prototype, the Conversational Internet
proof-of-concept demonstrates that the basic idea has potential
and that the UIMA architecture and application of machine
learning and natural language processing is a good fit for the
challenges facing screen reader users.

In terms of demand for this product, we see the following trends
as being important:

• an aging population with increased accessibility needs;

• greater accessibility legislation and

• growing wider market for voice technologies due to
speed, mobility and comfort.

Our solution means that either the entire Web can be tagged and
described or this can happen for a selection of websites, leading to
a two-tier Web.

The Conversational Internet will be of great use for the Virtual
Voice Assistants and Voice controlled Search Engine market as
well as voice apps.

6. REFERENCES
[1] Mozilla Firefox

http://www.mozilla.org/en-US/firefox/

[2] jQuery
http://jquery.com

[3] UIMA – Apache Unstructured Information Management
Architecture
http://uima.apache.org

[4] OASIS - Organization for the Advancement of Structured
Information Standards
https://www.oasis-open.org

[5] Boilerpipe
http://code.google.com/p/boilerpipe/

[6] IBM SPSS Modeler
http://ibm.com/software/analytics/spss/products/modeler/

[7] LanguageWare
http://ibm.com/software/globalization/topics/languageware/

[8] WordNet
http://wordnet.princeton.edu

[9] Nuance NDev
http://dragonmobile.nuancemobiledeveloper.com/

7. FURTHER INFORMATION
[1] Walkthrough and explanation of the prototype

http://youtu.be/uS6oquJdgbw

[2] Recording of an early iteration of the proof-of-concept
http://youtu.be/tSGyPCcO-bY

[3] Video outlining the challenges of screen readers
http://vimeo.com/33399797

[4] Short interview with one of the VI users who provided
feedback during development
http://www.bbc.co.uk/news/technology-19606004
(starting from 1min 47secs)

http://www.mozilla.org/en-US/firefox/
http://www.bbc.co.uk/news/technology-19606004
http://vimeo.com/33399797
http://youtu.be/tSGyPCcO-bY
http://youtu.be/uS6oquJdgbw
http://dragonmobile.nuancemobiledeveloper.com/
http://wordnet.princeton.edu/
http://www-01.ibm.com/software/globalization/topics/languageware/
http://www.ibm.com/software/analytics/spss/products/modeler/
http://code.google.com/p/boilerpipe/
https://www.oasis-open.org/
http://uima.apache.org/
http://jquery.com/

